Abstract

Antibodies have been shown to hinder the movement of herpes simplex virus virions in cervicovaginal mucus, as well as other viruses in other mucus secretions. However, it has not been possible to directly observe the mechanisms underlying this phenomenon, so the nature of virion–antibody–mucin interactions remain poorly understood. In this work, we analyzed thousands of virion traces from single particle tracking experiments to explicate how antibodies must cooperate to immobilize virions for relatively long time periods. First, using a clustering analysis, we observed a clear separation between two classes of virion behavior: freely diffusing and immobilized. While the proportion of freely diffusing virions decreased with antibody concentration, the magnitude of their diffusivity did not, implying an all-or-nothing dichotomy in the pathwise effect of the antibodies. Proceeding under the assumption that all binding events are reversible, we used a novel switch-point detection method to conclude that there are very few, if any, state switches on the experimental timescale of 20 s. To understand this slow state switching, we analyzed a recently proposed continuous-time Markov chain model for binding kinetics and virion movement. Model analysis implied that virion immobilization requires cooperation by multiple antibodies that are simultaneously bound to the virion and mucin matrix and that there is an entanglement phenomenon that accelerates antibody–mucin binding when a virion is immobilized. In addition to developing a widely applicable framework for analyzing multistate particle behavior, this work substantially enhances our mechanistic understanding of how antibodies can reinforce a mucus barrier against passive invasive species.

Highlights

  • There are several mechanisms by which antibodies (Ab) produced by the immune system can interfere with and even prevent viral infection after an invasion

  • We have developed mathematical models and statistical methods to analyze the behavior of herpes simplex virus (HSV) virions diffusing in cervicovaginal mucus (CVM) in the presence of various concentrations of cross-linking Ab

  • We found that particle paths can be partitioned into two basic categories: Freely Diffusing and Immobilized

Read more

Summary

Introduction

There are several mechanisms by which antibodies (Ab) produced by the immune system can interfere with and even prevent viral infection after an invasion. Antibodies have long been known to bind to surface epitopes on invading virions, rendering the pathogen ineffective either by blocking the epitope from binding to receptors on target cells, or signaling to other immune cells/molecules to inactivate the virus or destroy virus-infected cells. The presence of virion binding, immunoglobulin G (IgG) antibody, was shown to directly decrease the mobility of the herpes simplex virus (HSV) virions in human cervicovaginal mucus (CVM) (Wang et al 2014; Schroeder et al 2018), as well as influenza and Ebola virus-like particles in human airway mucus Donor F17 (a). The left and right columns show virion movement in the presence of low and high Ab concentrations, respectively. The degree of activity in the low Ab concentration is notably higher

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.