Abstract

Pyrenylbutyric acid and streptavidin were coupled to films of reduced graphene oxide (rGO) and then conjugated to a biotinylated broad-spectrum monoclonal antibody against aflatoxins (AFs). It is shown that such films can efficiently and selectively capture AFs inculding AFB1, AFB2, AFG1, AFG2, AFM1 and AFM2. The rGO films were characterized by using scanning electron microscopy, energy-dispersive spectroscopy, and raman spectroscopy. The selectivity and purification performance of the antibody-loaded rGO films were investigated. They were applied to the purification of extremely small samples (100μL) of AFs-spiked rabbit serum after enzymatic hydrolysis. The AFs were analyzed by ultra-performance liquid chromatography coupled to tandem mass spectrometry. The limits of detection for the six AFs investigated ranged from 50 to 170pg·mL-1. The average recoveries of AFs in spiked rabbit serum samples ranged from 55% to 75%, with relative standard deviations of less than 9.4%. Graphical abstract Design of a multifunctional sandwich film that consists of a reduced graphene oxide film base, a pyrenylbutyric acid middle layer and a broad-specificity anti-AF monoclonal antibody surface layer. It was successfully applied to the determination of aflatoxins in only 100μL of rabbit serum samples with satisfactory selectivity and acceptable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.