Abstract

IntroductionTreating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. ObjectivesIntroduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. MethodsThe AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. ResultsIn vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. ConclusionsThe application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.