Abstract

Soluble organic matrix (SOM) synthesis and secretion were investigated in two scleractinian corals using antibodies raised against this organic matrix. Results demonstrate that even if other cell types, including zooxanthellae, can supply precursors for SOM synthesis, only calicoblastic cells facing the skeleton are directly responsible for the synthesis and secretion of the SOM components. Results also indicate that, as is the case for other biominerals, skeleton formation is biologically controlled and not chemically dominated as originally believed. In addition to advancing the understanding of mechanisms of coral biomineralization, these antibodies could have numerous applications: for example as markers of skeletogenesis, as tools for cell culture, and in comparative studies among calcifying organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.