Abstract

In an extensive, multiyear study of antibiotic resistance from wastewater oxidation ponds, five mobile home park wastewater oxidation ponds in Clarke and Oconee counties were shown to be discharging high numbers of antibiotic-resistant bacteria into the waterways of North Georgia. This effluent contributed to higher nitrogen, phosphorus, and fecal coliform levels in creeks downstream from the ponds. A survey of residents revealed that many people did not complete their antibiotic prescriptions, and the majority flushed leftover antibiotic medications down the toilet. In the pond discharges, resistance was found to eighteen antibiotics: amikacin, amoxicillin/clavulanic acid, ampicillin, apramycin, cefoxitin, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, gentamicin, imipenem, kanamycin, naladixic acid, streptomycin, sulphamethoxazole, trimethoprim/sulphamethoxazole, and tetracycline. The discharged bacteria contained both integrons and plasmids, the latter being transferable to a laboratory strain of Escherichia coil (E. coli). A turtle was found living at a pond discharge site with multiply-antibiotic-resistant bacteria in its feces. Last year, RNA fingerprinting conclusively documented the survival of three multiply-resistant important pathogenic bacteria. Ceftriaxone-resistant Stenotrophomonas maltophilia and Pseudomonas aerogenosa and a ciprofloxacin-resistant E. coli were traced through oxidation pond stages and into the discharge, thus documenting that the pathogens survived the treatment process. In addition, a potential pathogen, a serotype group D Salmonella spp., was found in the discharge. In this study, tetracycline-resistance genes C and G were detected in the first and second stages of the oxidation pond and the discharge went directly into the environment. These genes are generally found in intestinal bacteria, so it can be inferred that they are from a human source. Antimicrobial residue from the beta-lactam family of antibiotics was found in all oxidation pond stages and in the creek above the pond. Tetracycline residue was found in the first and second stages of the pond. In addition to the antibiotics, genes coding for antibiotic resistance and the antibiotics themselves were documented to survive oxidation pond treatment. Tetracycline-resistant genes were identified in the oxidation pond stages and in the discharge going into the environment. A model was also developed to study oxidation pond function in the laboratory. A biofilm was created using a highly antibiotic-resistant Salmonella typhimurium 3/97, and pond water was added. The biofilm was processed via a rotating disk bioreactor specifically designed to study biofilms in nature, but with conditions that were more favorable to bacterial inhibition than those in nature. Cultures revealed that, under these optimal conditions, S. typhimurium 3/97 was still present in this in vitro system. Thus, the competitive inhibition process that helps to remove bacteria in oxidation ponds did not effectively remove an important bacterium, S. typhimurium 3/97, in this mock oxidation pond. The bioreactor model developed in this study can be used to further investigate discharges from oxidation ponds. From this data, it is apparent that the problem is two-fold. A cost-effective technique must be developed that inactivates antibiotic-resistant bacteria in oxidation pond discharges and also removes the antibiotics. A public awareness campaign was initiated by the author to encourage proper use and disposal of antibiotics, as flushing them is a common practice in the United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.