Abstract

Purpose We developed an antibiotic liposome (ciprofloxacin liposome) containing hydrogel for external coating of silicone Foley catheters and evaluated its efficacy in a rabbit model. Our goal was to create a catheter that would hinder the development of catheter associated nosocomial urinary tract infections. Materials and Methods We inserted either an untreated, liposomal hydrogel coated or a liposome hydrogel with ciprofloxacin coated 10F silicone Foley catheter into New Zealand White rabbits. We challenged the system with 5 × 10 6 virulent Escherichia coli at the urethral meatus twice daily for 3 days. Urine cultures were evaluated twice daily for 7 days. When urine cultures became positive, the rabbits were sacrificed and urine, urethral catheter and urethral tissue were cultured. Results The time to bacteriuria detection in 50% of the specimens was double for hydrogel with ciprofloxacin coated catheters versus untreated and hydrogel coated catheters. A significant (p = 0.04) improvement in average time to positive urine culture from 3.5 to 5.3 days and a 30% decrease in the bacteriuria rate for hydrogel with ciprofloxacin coated catheters were noted compared to untreated catheters. Conclusions A significant benefit was realized by coating the extraluminal catheter surface with a ciprofloxacin liposome impregnated hydrogel. We believe this procedure will provide a significant clinical advantage, while reducing health care costs substantially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.