Abstract

To address the threat of bacterial infection in the following post-antibiotic era, developing effective antibacterial approaches is of utmost urgency. Theranostic medicine integrating diagnosis and therapy is a promising protocol to fight against pathogenic bacteria. But numerous reported antibacterial theranostic materials are disclosed to be trapped in the excessive invasiveness to living mammal cells, leading to false positives and possible biosafety risks. Herein, a series of cationic pyridinium-substituted phosphindole oxide derivatives featuring aggregation-induced emission are designed, and alkyl chain engineering is conducted to finely tune their hydrophobicity and investigate their bioaffinity preference for living mammal cells and pathogenic bacteria. Most importantly, an efficient theranostic agent (PyBu-PIO) is acquired that is free from living cell invasiveness with negligible cytotoxicity and yet holds a good affinity for Gram-positive bacteria, including drug-resistant strains, with a superior inactivating effect. Externally applying PyBu-PIO onto Gram-positive bacteria-infected skin wounds can achieve creditable imaging effects and successfully accelerate the healing processes with reliable biosafety. This work proposes living cell invasiveness as a criterion for antibacterial theranostic materials and provides important enlightenment for the design of antibacterial theranostic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.