Abstract

Novel antibacterial properties of composites prepared from thermally treated waste white scallop shell powder (TWWSSP) and modified polylactide (MPLA) are reported. The waste shell (calcium carbonate, CaCO3) was calcined at 1000 °C to completely form calcium oxide (CaO) and calcium hydroxide (Ca(OH)2). The composition and structure of the calcined product were characterized using energy dispersive spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction. The TWWSSP was studied to determine its effectiveness as a bactericidal agent when incorporated into MPLA to form composites. Infrared, tensile, and morphological characterizations indicated an enhanced adhesion between the TWWSSP and the MPLA in the composites and an improved compatibility compared with the PLA/WWSSP composites. The MTT assay and cell adhesion tests on the composites revealed that the relative growth rate of Mus dunni fibroblast (MDFB) cells increased with an increasing TWWSSP content, which indicated that the composites were not cytotoxic. Moreover, TWWSSP containing CaO and Ca(OH)2 enhanced the antibacterial activity of the composites; MPLA composites that contained TWWSSP had a better antibacterial activity. The antibacterial and biodegradable properties of the MPLA/TWWSSP and PLA/WWSSP composites have a great potential for many applications, especially food packaging and biomedical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.