Abstract

Antibacterial-modified cellulose fiber was prepared by covalently bonding β-cyclodextrin (β-CD) with cellulose fiber via citric acid (CA) as crosslinking agent, followed by the inclusion of ciprofloxacin hydrochloride (CipHCl) as antibiotic. Effects of reaction time, temperature, concentration of β-cyclodextrin citrate (CA-β-CD) and pH on the grafting reaction were investigated, and the grafting ratio of β-CD onto cellulose fibers was 9.7 % at optimal conditions; the loading and releasing behaviors of CipHCl into/from β-CD grafted cellulose fibers were also revealed, the load amount of CipHCl into grafted cellulose fibers increased remarkably, and the release of CipHCl from the grafted cellulose fibers was prolonged. The microstructure, phase and thermal stability of modified cellulose fibers were characterized by FT-IR, 13C CPMAS NMR, X-ray diffraction and TGA. Considerably longer bacterial activity against E. coli and S. aureus was observed for grafted fibers loading CipHCl compared to virgin ones. Optical and mechanical properties of the paper sheets decreased generally with more antibacterial-modified fibers added.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.