Abstract

Acinetobacter baumannii (A. baumannii) is a dangerous nosocomial pathogen in intensive care units, causing fatal clinical challenges and mortality. In this study, the green synthesis of silver nanoparticles (AgNPs) using the extract of Ferula asafetida and the chemical synthesis of AgNPs were carried out to evaluate their effects on A. baumannii bacterial strain and a human adenocarcinoma cell line. The NPs were characterized using several techniques, including field emission-scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, UV-visible spectroscopy, and Fourier-transform infrared spectroscopy. After synthesis, the arrangement of AgNPs was confirmed based on the maximum absorption peak at 450 nm. The results showed that the AgNPs had a hexagonal structure. The antimicrobial activity of biogenic NPs significantly increased and reached a minimum inhibitory concentration of 2 μg/mL. The nanomaterials did not exhibit any toxic effects on the human cell line at certain concentrations and showed improvements compared to chemically synthesized AgNPs. However, at higher concentrations (100 μg/mL), the cytotoxicity increased. Finally, it was concluded that biosynthesized AgNPs had significant antimicrobial effects on A. baumannii isolated from intensive care units.

Highlights

  • The ESKAPE pathogens, including Enterobacter spp., Pseudomonas aeruginosa, Enterococcus faecium, Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus, have developed multidrug resistance in clinics

  • This study is aimed at evaluating the biogenic synthesis of AgNPs using the extract of F. asafoetida as a reducing agent

  • The results showed that F. asafoetida contained 35 chemical constituents, including propenyl butyl disulfide

Read more

Summary

Introduction

The ESKAPE pathogens, including Enterobacter spp., Pseudomonas aeruginosa, Enterococcus faecium, Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus, have developed multidrug resistance in clinics. These pathogens are associated with high levels of lethargy and mortality, imposing significant costs on patients and healthcare systems [1]. Acinetobacter baumannii is a Gram-negative, nonfastidious, nonfermenting, nonmotile coccobacillus responsible for respiratory infections, pneumonia, and urinary tract infections [2]. This pathogen attacks unhealthy hospitalized patients and severely damages their skin and the respiratory tract [3].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.