Abstract

BackgroundTrueperella pyogenes and Pseudomonas aeruginosa are two important bacterial pathogens closely relating to the occurrence and development of forest musk deer respiratory purulent disease. Although T. pyogenes is the causative agent of the disease, the subsequently invaded P. aeruginosa will predominate the infection by producing a substantial amount of quorum-sensing (QS)-controlled virulence factors, and co-infection of them usually creates serious difficulties for veterinary treatment. In order to find a potential compound that targets both T. pyogenes and P. aeruginosa, the antibacterial and anti-virulence capacities of 55 compounds, which have similar core structure to the signal molecules of P. aeruginosa QS system, were tested in this study by performing a series of in vitro screening experiments.ResultsWe identified that furazolidone could significantly reduce the cell densities of T. pyogenes in mono-culture or in the co-culture with P. aeruginosa. Although the growth of P. aeruginosa could also be moderately inhibited by furazolidone, the results of phenotypic identification and transcriptomic analysis further revealed that sub-inhibitory furazolidone had remarkable inhibitory effect on the biofilm production, motility, and QS system of P. aeruginosa. Moreover, furazolidone could efficiently protect Caenorhabditis elegans models from P. aeruginosa infection under both fast-killing and slow-killing conditions.ConclusionsThis study reports the antibacterial and anti-virulence abilities of furazolidone on T. pyogenes and P. aeruginosa, and provides a promising strategy and molecular basis for the development of novel anti-infectious drugs to dealing with forest musk deer purulent disease, or other diseases caused by T. pyogenes and P. aeruginosa co-infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.