Abstract

A large number of infections are caused by multi-resistant bacteria worldwide, increasing to around 700,000 deaths per year. Because of that, many strategies are being developed to combat the resistance of microorganisms to drugs, and recently, chalcones have been studied for this purpose. Chalcones are known as α, β-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain. They are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, including anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmaniasis. The objective of this work was to evaluate the antibacterial and antibiotic modifying activity of chalcone (2E)-1-(4′-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone showed no toxicity on macrophage cells and was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. Furthermore, the theoretical physicochemical and pharmacokinetic properties of chalcone showed that it did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting an excellent pharmacological active ingredient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.