Abstract
A polyclonal, phospho-epitope-specific antibody (P-STM) was generated to detect the activated p21-activated kinase 2 (PAK2), based on the regulatory autophosphorylation site Thr(402) of PAK2 [Yu et al., 1998]. In this report, we show that this antibody can also recognize many phosphoproteins in mitotic HeLa and A431 cells. Signal of these phosphoproteins emerged after treating the cells with nocodazole and okadaic acid, and was highly detected in G2-M phase transition of HeLa cells released from double thymidine block. Immunofluorescence analysis revealed that P-STM strongly stained HeLa cells at prometaphase and metaphase, but not at interphase and anaphase. Interestingly, this staining pattern was almost identical to that obtained by staining with MPM2, a monoclonal antibody known to react with phosphoproteins in mitotic HeLa cells. However, the phosphoproteins detected by the two antibodies are quite different. Two-dimensional gel electrophoresis (2DE) and tryptic peptide fingerprint analysis by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry were employed to identify lamins A and C as two of the mitotic cell-specific phosphoproteins recognized by P-STM. Lamins A and C immunoprecipitated from nocodazole-treated cells, but not from untreated cells showed strong reactivity to P-STM, and this reactivity lost completely after protein phosphatase 2A treatment. In summary, our results show that P-STM represents a novel tool for detecting mitotic phosphoproteins, which are different from those recognized by MPM2, and that lamins A and C are the two prominent mitotic phosphoproteins detected by P-STM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.