Abstract

Cultured human fibroblasts display age-dependent transcriptomic differences. We hypothesized that aging-associated oxidative stress affects gene expression, and monitored the transcriptome in confluent fibroblasts from young and old individuals cultured without and with a lipophilic and hydrophilic anti-oxidant mixture (vitamin E, quercetin, hydroxytyrosol and kaempferol). In cells derived from old subjects genes with lower expression were related to oxidative stress, growth and differentiation, cell cycle or metabolic enzymes and with higher expression to protein processing and docking, extracellular matrix, immune response, EGF-signalling and transcription. Anti-oxidant treatment modulated a similar number of genes in all donors and induced cell cycle regulatory genes. A subset of genes, modulated by age and inversely modulated by anti-oxidants, included glutaminase. Despite increased glutaminase expression, donor age-dependent decline in glutathione content and resistance to glutathione-depletion was observed. Summarizing, gene expression of fibroblasts is affected by donor age and a subset was corrected by anti-oxidants. Thus, in cultured fibroblasts from aged donors, gene expression is partly driven by oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.