Abstract
In this study, an anti-jerking and traction torque compensation strategy for P3 + hybrid electric vehicle (HEV) equipped with hybrid automated mechanical transmission (HAMT) during power upshift is proposed. Firstly, to investigate the power upshift characteristics, a powertrain model with three torque ports and flexible drive shaft is established. Secondly, based on the established powertrain model, a hierarchical structure optimization strategy for power upshift is developed. The optimization strategy makes full use of the fast and accurate torque response of the traction motor, aims at simultaneously suppressing the longitudinal jerk and compensating the traction torque, solves the optimal traction motor torque to improve the power upshift performance of P3 + HEV. Finally, a layer-by-layer simulation and a real vehicle test of the power upshift process from first gear to second gear are implemented to verify the effectiveness of the proposed optimization strategy. The verification results show that the proposed strategy can realize smooth and traction torque uninterrupted power upshift process at the same time. Compared with the traditional PI controller the proposed optimization strategy can achieve smaller longitudinal jerk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.