Abstract

Indomethacin is used as an anti-inflammatory drug and a nonselective cyclooxygenase inhibitor. When indomethacin in methanol was photo-irradiated with an Hg lamp, methyl ester, ethyl ester, and gamma-lactone derivatives of indomethacin were produced. In the present study, we found that the methyl ester derivative of indomethacin (M-IN) could more potently inhibit prostaglandin E(2) (PGE(2)) and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX 2) protein expression from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than indomethacin, similar to the effect of a non-steroidal anti-inflammatory drugs (NSAID). On the other hand, the results showed that M-IN with an IC(50) value maintained at 36.9 microg/ml for 12 h exhibited stronger cytotoxicity than ethyl ester, gamma-lactone derivatives of indomethacin, and indomethacin in promyelocytic leukemia HL-60 cells. Moreover, a series of biochemical analyses determined that M-IN caused apoptotic bodies, DNA fragmentation, and enhanced PARP and pro-caspase 3 degradation in HL-60 cells. These above results indicate that the photosynthesized product, M-IN, had stronger anti-inflammatory effects in LPS-stimulated RAW 264.7 cells and cytotoxicity effects in HL-60 cells than the parent drug, indomethacin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.