Abstract

Anti-icing surface is crucial to the safety of aircraft, power line, mechanical apparatus and other important devices, while the current superhydrophobic surfaces are facing dilemmas of short lifespan, poor stability and complex processing, owing to the low-strength of coating or required post-chemical modification. Here, considering the pivotal role of micro-nano textures in enhancing the stability and lifespan of ice-repellent surfaces, grating textures with micro-nano tertiary structures on aluminum alloy surface were directly constructed through picosecond laser processing. These hierarchically textured surfaces exhibit low-temperature-adaptive water repellency, which delays frozen time and drops frozen temperature. The above scenario was fundamentally understood from viewpoint of both wettability and thermodynamics. These results are extremely important for fabricating superhydrophobic metallic surface with long lifespan and delayed frozen performance without any chemical modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.