Abstract

Chitooligosaccharides are nontoxic and water-soluble compounds obtained by enzymatic degradation of chitosan, which is derived from chitin by a deacetylation process. Chitooligosaccharides possess broad range of activities such as antitumour, antifungal, antibacterial activities. Sulfated chitooligosaccharides (SCOSs) with different molecular weights were synthesized by a random sulfation reaction. In the present study, anti-HIV-1 properties of SCOSs and the impact of molecular weight on their inhibitory activity were investigated. SCOS III (MW 3–5 kDa) was found to be the most effective compound to inhibit HIV-1 replication. At nontoxic concentrations, SCOS III exhibited remarkable inhibitory activities on HIV-1-induced syncytia formation (EC 50 2.19 μg/ml), lytic effect (EC 50 1.43 μg/ml), and p24 antigen production (EC 50 4.33 μg/ml and 7.76 μg/ml for HIV-1 RF and HIV-1 Ba-L, respectively). In contrast, unsulfated chitooligosaccharides showed no activity against HIV-1. Furthermore, it was found that SCOS III blocked viral entry and virus-cell fusion probably via disrupting the binding of HIV-1 gp120 to CD4 cell surface receptor. These results suggest that sulfated chitooligosaccharides represent novel candidates for the development of anti-HIV-1 agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.