Abstract

Membrane fouling is a universal problem for conventional membrane filtration that usually causes a deterioration in membrane performance. We used electro-assisted carbon nanotubes hollow fiber membranes (CNTs-HFMs) to investigate the anti-fouling properties using natural organic pollutants. Benefiting from the electro-assistance, the permeation flux of humic acid solution using CNTs-HFMs was 190.20 L/(m2·h·bar), which was about 1.5- and 4.4-times higher than those of CNTs-HFMs without electro-assistance and traditional polyvinylidene fluoride hollow-fiber membranes (PVDF-HFMs). And the permeation fluxes of bovine serum albumin, sodium alginate and supernatant of anaerobic bioreactor also presented similar results. The average COD removal rate of CNTs-HFMs (66.8%) at −1.0 V was higher than that of CNTs-HFMs without electro-assistance and PVDF-HFMs, which can be attributed to the formation of electrostatic repulsive force. It could reduce the deposition of pollutants on membrane surface under electroassistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.