Abstract

In this paper, we present a method for the sensitive detection of microRNAs (miRNAs) utilizing an antibody that specifically recognizes DNA:RNA heteroduplexes and a silicon photonic microring resonator array transduction platform. Microring resonator arrays are covalently functionalized with DNA capture probes that are complementary to solution phase miRNA targets. Following hybridization on the sensor, the anti-DNA:RNA antibody is introduced and binds selectively to the heteroduplexes, giving a larger signal than the original miRNA hybridization due to the increased mass of the antibody, as compared to the 22-mer oligoribonucleotide. Furthermore, the secondary recognition step is performed in neat buffer solution and at relatively higher antibody concentrations, facilitating the detection of miRNAs of interest. The intrinsic sensitivity of the microring resonator platform coupled with the amplification provided by the anti-DNA:RNA antibodies allows for the detection of microRNAs at concentrations as low as 10 pM (350 amol). The simplicity and sequence generality of this amplification method position it as a promising tool for high-throughput, multiplexed miRNA analysis as well as a range of other RNA based detection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.