Abstract

Several diseases, including cancer, can be effectively treated by altering the nanocarrier surfaces so that they are more likely to be targeted. This study aimed to prepare human albumin (HSA) nanoparticles containing Fenoferin (FN) modified with folic acid (FA) attached to Chitosan (CS) to improve its anti-cancer properties. Nanoparticles were first synthesized and surface modified. Their physicochemical properties were assessed by different methods, such as FESEM, FTIR, and DLS. In addition, the percentage of drug encapsulated was measured by indirect method. Besides evaluating the cytotoxic effects of nanoparticles using the MTT assay, the antioxidant capacity of FN-HSA-CS-FA was assessed using the ABTS and DPPH methods. Nanoparticles were also investigated for their anti-cancer effects by evaluating the expression of apoptosis and metastasis genes. Based on this study, FN-HSA-CS-FA was 165.46 nm in size, and a uniform dispersion distribution was identified. Particles were reported to have a zeta potential of +29 mV, which is within the range of stable nanoparticles. Approximately 75% of FN is encapsulated in nanoparticles. Cytotoxic assay determined that liver cancer cells were most sensitive to treatment with an IC50 of 144 μg/ml. Inhibition of free radicals by nanoparticles is estimated to have an IC50 value of 195.23 and 964 μg/ml, for ABTS and DPPH, respectively. In the treatment with nanoparticles, flow cytometry results of arresting the cells in the SubG1 phase and real-time qPCR results indicated increased expression of caspases-3, caspase-8, and caspase-9 genes. According to this study, synthesized nanoparticles inhibited free radicals and activated apoptosis in liver cancer cells, and the capability of these nanoparticles to inhibit cancer cells was also confirmed. This formulation can, therefore, be used in preclinical studies to test the efficacy of the drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.