Abstract
BackgroundThis study aimed to evaluate the anti-aging effect of a newly prepared insect-derived compound, dung beetle glycosaminoglycan (GAG), given intraperitoneally to old SD rats as part of their diet for 1 month. Insect GAG administration was found to be related to a reduction in oxidative damage, hepato-cellular biomarker levels, protein carbonyl content, and malondialdehyde concentration. The anti-aging-related molecular genetic mechanisms of dung beetle GAG are not yet fully elucidated.ResultsCatharsius molossus (a type of dung beetle) GAG (CaG) possessed anti-aging activities; it reduced the serum level of creatinine kinase, had aortic vasorelaxant activities and cardioprotective actions, and maintained a normal glucose level in treated rats. Microarray analysis was performed with a rat 30 K cDNA clone set array to identify the gene-expression profiles of 14-month-old SD rats treated with dung beetle glycosaminoglycan 5 mg/kg (CaG5) over a 1-month period, which was done to investigate its anti-aging effect as compared to that of either Bombus ignitus (a type of bumblebee) queen GAG 5 mg/kg (IQG5) or chondroitin sulfate 10 mg/kg. CaG5 and IQG5 had marked anti-inflammatory effects, bringing about inhibition of free fatty acid, uric acid, sGPT, IL-1 beta, and CK values. In addition, anticoagulant and antithrombotic effects were seen: the concentration of factor 1 (fibrinogen) was increased in CaG- treated rat plasma. The CaG5-treated rat group, compared to the control, displayed upregulation of 131 genes, including lipocalin 2 (Lbp) and a serine peptidase inhibitor, Kaszal type3 (Spink3), and 64 downregulated genes, including lysyl oxidase (Lox), serine dehydratase (sds), and retinol saturase (Retsat).ConclusionOur data suggest that dung beetle glycosaminoglycan may be a helpful treatment for aged rats, which indicates its potential as a therapeutic biomaterial for aging.
Highlights
This study aimed to evaluate the anti-aging effect of a newly prepared insect-derived compound, dung beetle glycosaminoglycan (GAG), given intraperitoneally to old Sprague Dawley (SD) rats as part of their diet for 1 month
Body weight and adipose fat changes There were no significant differences in mean body weight between the treatment groups (Fig. 1)
The mean quantity of abdominal fat was significantly decreased in the Queen of Bombus ignitus glycosaminoglycan 5 mg/kg (IQG5) and Chondroitin sulfate (CS10) groups compared to the control: 21.84 ± 7.46 g for the control; 20.66 ± 8.47 g for CaG5; 16.56 ± 5.97 g for IQG5 (IQG5 vs Control group (CON), p < 0.05); and 16.93 ± 5.17 g for CS10 (CS10 vs CON, p < 0.05) (Fig. 2a)
Summary
This study aimed to evaluate the anti-aging effect of a newly prepared insect-derived compound, dung beetle glycosaminoglycan (GAG), given intraperitoneally to old SD rats as part of their diet for 1 month. An age- or obesity-related increase in visceral adipose tissue is usually accompanied by low-grade chronic inflammation, which has been postulated as a cause of various metabolic diseases including cancer, cardiovascular diseases, and, most prominently, type two diabetes [15]. These insect GAGs can be used in a fast developing field with the prospect of utilizing tissue engineering and biomaterials as novel therapies [16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.