Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in polluted environments and are included in the priority list of toxic compounds. Previous studies have shown that the fungus Penicillium oxalicum, isolated from a hydrocarbon-polluted pond, has a great capability to transform different PAHs in short periods under submerged fermentation conditions. Although cytochrome p450s (CYPs) seems to be the main responsible enzyme in this process, changes in proteome profile remains poorly understood. The aim of this work was to characterise molecular disturbances in the cytosolic and microsomal sub-proteomes of P. oxalicum by applying two-dimensional (2D) gel electrophoresis and label-free quantitative proteomics during anthracene biodegradation. Our results showed that by using 2D-gels, 10 and 8 differential proteins were over-expressed in the cytosolic and microsomal fractions, respectively. Most of them were related to stress response. Shotgun proteomics allowed the identification of 158 and 174 unique protein species that differentially accumulated during anthracene biotransformation, such as CYPs, epoxide hydrolases and transferases enzymes, belonging to Phase I and Phase II of the metabolism of xenobiotics, contributing to the anthracene biodegradation pathway. These results confirm the biological significance of ascomycetes fungi the rol of CYPs on biodegradation and the need of a deeper knowledge on fungal proteomics for the application of the appropriate microorganisms in biodegradation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.