Abstract
BackgroundAnterior cervical discectomy and fusion (ACDF) is an alternative to conservative therapy in the treatment of cervical spondylopathy. This study evaluated the clinical outcome of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules.MethodsThirty-two patients with cervical spondylopathy received treatment of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules. The clinical outcomes were evaluated with the Japanese Orthopedic Association (JOA) scores and Neck Disability Index (NDI). Meanwhile, the cervical curvature and intervertebral heights were obtained through lateral cervical X-ray films pre- and postoperatively at each interval, and the precision of cervical fusion was assessed by three-dimensional computed tomography scan.ResultsThe follow-up averaged 15.2 months (range 13–18). Average JOA scores significantly increased from a preoperative point (7.4 ± 1.2) to each interval after surgery (P < 0.05). NDI decreased from preoperative point (43.1 ± 9.0) to each interval after surgery (P < 0.05). The angles of cervical curvature and intervertebral heights were improved postoperatively and kept throughout the follow-up period. CT scan demonstrated a fusion rate of 82.9% at 6 months postoperatively and was improved to 100% at 12 months postoperatively. In all cases, no complications appeared and reported due to any lapse in surgical procedure skills throughout the follow-up period.ConclusionsOur preliminary findings suggest that BMP-2-adsorbed β-tricalcium phosphate granules will be an effective alternative to autogenous bone grafting for cervical fusion in treating cervical spondylopathy. Our surgical procedure usingβ-tricalcium phosphate granules could improve neurological function, recover intervertebral height and cervical curvature, and could be potentially exploitable in the clinical setting.
Highlights
Anterior cervical discectomy and fusion (ACDF) is an alternative to conservative therapy in the treatment of cervical spondylopathy
Anterior cervical discectomy and fusion (ACDF) has been the standard procedure for the treatment of cervical spondylopathy which is non-responsive to conservative therapy
We evaluated the potential of the actively artificial bone as a substitute for autogenous bone based on a retrospective analysis of the subjects who received the ACDF for the treatment of cervical spondylopathy
Summary
Anterior cervical discectomy and fusion (ACDF) is an alternative to conservative therapy in the treatment of cervical spondylopathy. Anterior cervical discectomy and fusion (ACDF) has been the standard procedure for the treatment of cervical spondylopathy which is non-responsive to conservative therapy. The procedure can decompress the spinal cord and nerve roots and restore the alignment of the spinal column and achieve interbody fusion, which may guarantee sustainable clinical outcome [1]. Various researches have proposed many bone replacement or new materials to substitute the autogenous bone graft, but all have its advantages and disadvantages [5]. Allogeneic bone and demineralized bone matrix have been applied to the clinical setting, but due to the lack of resources, possible disease transmission, and the inferior osteogenic capacity they possess may limit the wide usage and replacement of the autogenous bone in interbody fusion. The idea and concept of tissue-engineered scaffolds, cell-based treatment, and gene therapy for spine fusion are still in the groundwork stage and may require more time to be clinically implemented after experimental testing and clinical trials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.