Abstract
A distributed MIMO radar network consists of a large number of transmitters/receivers to cover a sensing area of interest but under the constraint that the number of antennas is limited. The problem of selecting a subset of antennas at a sampling time to maximize the diversity capability of the MIMO radar in terms of target resolvability is addressed from the information geometric viewpoint in this paper. Fisher information matrix of distributed MIMO radar which takes both radar waveform and SNR into account is derived as a function of individual antenna locations. The Fisher information distance (FID) between the measurement distribution based on all antennas and that based on only the selected set of antennas is calculated and is adopted as the criterion of selecting a subset of antennas. The underlying antenna selection problem is then to select a subset of antennas from all antennas which can result in the “shortest” FID with respect to a given target location. Since an NP hard search process is involved, an exhaustive search method is considered for efficient antenna subset selection. Simulation examples are presented to demonstrate the effectiveness of the proposed algorithm compared with other criteria in different antenna configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.