Abstract

Plant floral transition is a major developmental switch regulated by an integrated network of pathways. Arabidopsis FLOWERING LOCUS K (FLK), a protein with three KH RNA-binding domains, operates in the autonomous flowering-promotive pathway by decreasing the transcript levels of the key flowering repressor FLOWERING LOCUS C (FLC). Here we report that PEPPER (PEP), an FLK paralog previously shown to affect vegetative and pistil development, antagonizes FLK by positively regulating FLC. Lack of PEP function rescues the flk late-flowering phenotype with a concomitant decrease in FLC RNA levels. Loss of HUA2, another FLC activator encoding an RNA-binding protein, further rescues flk, being flk hua2 pep triple mutants virtually wild-type regarding flowering time. Consistently, PEP overexpression determines high levels of FLC transcripts and flowering delay. Genetic and molecular analyses indicate that FLK and PEP act independently of FCA, another important FLC repressor in the autonomous pathway. In addition, we present data suggesting that PEP may affect FLC expression at both transcriptional and post-transcriptional levels. Overall, our results uncover PEP as a new factor for FLC upregulation, underscoring the importance of RNA-binding activities during developmental timing of flowering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.