Abstract

BackgroundLess than 100 years since it was first transmitted to the human population HIV-1 infects more than 30 million people worldwide and causes almost 2 million AIDS-related deaths every year. Viruses manipulate cellular genes and pathways to benefit their survival, and the study of cell surface proteins downregulated by viruses has provided insights into both viral pathogenesis and crucial aspects of cell biology. We aimed to identify novel cell surface proteins targeted for downregulation by HIV-1. MethodsWe combined plasma membrane enrichment through selective aminooxybiotinylation with tandem mass tag-based quantitative proteomics (plasma membrane profiling) to map expression timecourses of more than 800 plasma membrane proteins in T cells infected in vitro with HIV-1. Novel substrates of the viral accessory proteins Vpu and Nef were sought by use of deletion viruses and single gene overexpression. FindingsOur proteomic datasets defined more than 100 previously unsuspected cell surface targets of HIV-1, particularly proteins involved in T-cell activation, cell adhesion, and aminoacid transport. In addition to its known targets, Vpu was found to be necessary and sufficient for the downregulation of the aminoacid transporter TOV3. Downregulation of TOV3 was post transcriptional, mediated by the β-TrCP ubiquitin E3 ligase and occurred via an endolysosomal pathway. TOV3 was highly expressed in primary human CD4 T cells, and depletion of TOV3 by RNA interference markedly impaired the mitogenic response to CD3/CD28 stimulation. We identified alanine as an endogenous TOV3 substrate, and showed that extracellular alanine was crucial for T-cell proliferation. InterpretationThis study suggests that TOV3 downregulation is restricted to Vpu variants from the lineage of HIV-1 group M viruses giving rise to pandemic AIDS. Antagonism of alanine transport in CD4 T cells might contribute to HIV-1 pathogenesis through modulation of virus production, impairment of the adaptive immune response, or enhancement of CD4 T-cell loss. FundingWellcome Trust, Addenbrooke's Charitable Trust, Raymond and Beverly Sackler Foundation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.