Abstract

Partial nitritation (PN) reactors treating complex industrial wastewater can be operated by alternating anoxic-aerobic phases to promote heterotrophic denitrification via NO2(-). However, denitrification under stringent conditions can lead to high N2O production. In this study, the suitability of including anoxic phases in a PN-SBR treating real industrial wastewater was assessed in terms of process performance and N2O production. The PN-SBR was operated successfully and, when the HCO3(-):NH4(+) molar ratio was adjusted, produced a suitable effluent for a subsequent anammox reactor. 10-20% of the total influent nitrogen was removed. N2O production accounted for 3.6% of the NLR and took place mainly during the anoxic phases (60%). Specific denitrification batch tests demonstrated that, despite the availability of biodegradable COD, NO2(-) denitrification advanced at a faster rate than N2O denitrification, causing high N2O accumulation. Thus, the inclusion of anoxic phases should be avoided in PN reactors treating industrial wastewaters with high nitrogen loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.