Abstract

We study the perturbation of the effective Hamiltonian constraint with holonomy correction from Euclidean loop quantum gravity. The Poisson bracket between the corrected Hamiltonian constraint and the diffeomorphism constraint is derived for vector modes. Some specific form of the holonomy correction function $f^{i}_{cd}$ is found, which satisfies that the constraint algebra is anomaly-free. This result confirms the possibility of non-trivial holonomy corrections from full theory while preserving anomaly-free constraint algebra in the perturbation framework. It also gives valuable hints on the possible form of holonomy corrections in effective loop quantum gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.