Abstract
The 26 May 2019 Peru (MW 8.0) earthquake struck within the nearly-horizontal underthrust Nazca plate at depths from ∼110 to 150 km below the upper Amazon, near a steep bend in the plate where it plunges down to a deep earthquake zone. Little prior seismicity occurred in this region, but large intraslab events with similar normal-faulting mechanisms have occurred to the west. The event is situated in a similar slab position to the 2017 Puebla-Morelos, Mexico earthquake, but the remote location resulted in limited loss of life and damage. Back-projection imaging and finite-fault inversion based on teleseismic data suggest a brittle and energetic rupture process with unilateral expansion northward over a 170-km-long zone at a rupture speed, Vr ∼3 km/s, with three normal-faulting patches of up to ∼4.5 m slip. Despite the mainshock size, it produced only three M4.0+ aftershocks within 300 km (one nearby); the aftershock productivity of the 2019 Peru earthquake is very low even among all large intermediate-depth earthquakes, but similar to that for other large Peruvian intraslab events. Comparison of aftershock productivity of the Peru event with that of global large earthquakes in various tectonic settings suggests that the low aftershock productivity can largely be attributed to regionally homogeneous faulting systems and relatively uniform stress state in the flat Peru slab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.