Abstract
The surface phonon-polaritons contribution to the thermal conductivity of a nano thin film of silicon dioxide is investigated based on the Maxwell equations and the Boltzmann transport equation. It is shown that: (1) a small difference between the permittivities of the substrate and superstrate of the film can generate giant propagation lengths and therefore remarkably enhances its thermal conductivity with respect to values obtained for a freestanding one. (2) The propagation of surface phonon-polaritons is present in a broad band of frequencies and exhibits its largest propagation lengths at the frequency where the absorption of energy is minimal. (3) The increase of the thermal conductivity of the film as its thickness decreases is higher when it is deposited on potassium bromide instead of being suspended in air. The difference in the thermal conductivity for these two systems increases with increasing temperature and reducing the film thickness. A thermal conductivity as high as 2.5 W/m K is obtained for a 30 nm-thick thin film at room temperature, which is about 1.8 times larger than its bulk phonon value. The obtained results show that the propagation of surface phonon-polaritons has the potential not only to offset the reduction of the phonon thermal conductivity of a nano thin film, when its sizes are scaled down, but also to enhance it, by choosing properly the permittivity of its substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.