Abstract

The issue of whether the quantum critical point (QCP) is hidden inside unconventional superconductors is a matter of hot debate. Although a prominent experiment on London penetration depth has demonstrated the existence of the QCP in the isovalent-doped iron-based superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$, with the observation of a sharp peak in the penetration depth in the vicinity of the disappearance of magnetic order at zero temperature, the nature of such an emerging QCP remains unclear. Here, we provide a unique picture to understand well the phenomena of the QCP based on the framework of linear response theory. Evidence from the density of states and superfluid density calculations suggests the nodeless-to-nodal pairing transition accompanied the appearance of a sharp peak in the penetration depth in BaFe$_2$(As$_{1-x}$P$_x$)$_2$. Such a pairing transition originates from the three-dimensional electronic properties with a strong interlayer superconducting pairing. This finding provides a significant insight into the understanding of the QCP observed in experiment in BaFe$_2$(As$_{1-x}$P$_x$)$_2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.