Abstract

Surfaces can significantly alter the optical properties of nanomaterials, but they are difficult to control and their roles are hard to understand in highly reactive materials such as silicon nanomaterials. In this work, we investigate the role of the surface in controlling the optical transitions in highly luminescent silicon-derived nanoparticles. By combining high-pressure and low-temperature experiments, we experimentally correlate the anomalously intense and narrow transitions in the UV range with the surface oxides, while the visible transition and the photoluminescence (PL) are verified to originate from the Si-ligand charge transfer band. We find that the high-pressure absorption and PL depends on the rigidity of the surface ligand. This indicates that the surface plays a dominant role on the optical properties of these silicon-derived nanoparticles, and is different than other semiconductor nanomaterials, in which pressure-dependent optical transitions depend on lattice strain or phase transformations. This work presents a comprehensive understanding of the optical transitions and the effect of surface ligands and surface oxidation in these highly luminescent Si-derived nanoparticles. The new insight into the oxidation-activated and ligand-mediated transitions, and the pressure-dependent PL may help with engineering the band structure of other highly-reactive optical nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.