Abstract

For the orthorhombic intermetallic semiconductor ${\mathrm{Al}}_{2}$Ru, the band structure, valence charge density, zone-center optical-phonon frequencies, and Born effective-charge and electronic dielectric tensors are calculated using variational density-functional perturbation theory with ab initio pseudopotentials and a plane-wave basis set. Good agreement is obtained with recent measurements on polycrystalline samples, which showed anomalously strong far-IR absorption by optical phonons, while analysis of the valence charge density shows that the static ionic charges of Al and Ru are negligible. Hybridization is proposed as the single origin both of the semiconducting gap and the anomalous Born effective charges. Analogous behavior is expected in related compounds such as NiSnZr, PbTe, skutterudites, and Al-transition-metal quasicrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.