Abstract

This study was conducted to determine how extraordinarily high numbers of epidermal growth factor receptors (EGF-R) affected the binding and internalization of EGF in the transformed cell line A431. I found that at low EGF concentrations, the kinetics of binding behaved as a nonsaturable, first-order process showing no evidence of multiple-affinity classes of receptors. However, EGF dissociation rates were strongly dependent on the degree of receptor occupancy in both intact cells and isolated membranes. This occupancy-dependent dissociation appears to be due to diffusion-limited binding. EGF-induced receptor internalization was rapid and first order when the absolute number of occupied receptors was below 4 x 10(3) min-1. However, at higher occupancies the specific internalization rate progressively declined to a final limiting value of 20% normal. The saturation of EGF-R endocytosis was specific since internalization of transferrin receptors was not affected by high concentrations of either transferrin or EGF. Saturation of EGF-R endocytosis probably involves a specific component of the endocytic pathway since fluid phase endocytosis increased coordinately with EGF-R occupancy. I conclude that there are several aspects of EGF-R dynamics on A431 cells are neither similar to the behavior of EGF-R in other cell types nor similar to the reported behavior of other hormone receptors. Although A431 cells have an extraordinary number of EGF-R, they do not seem to have corresponding levels of at least two other crucial cell surface components: one that mediates EGF-induced rapid receptor internalization and one that attenuates EGF-induced membrane responses. These factors, in addition to the presence of diffusion-limited binding at low EGF concentrations, are probably responsible for the appearance of multiple-affinity classes of receptors in this cell type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.