Abstract

Acoustic relaxation in undeformed and plastically deformed CsI single crystal has been studied using the composite oscillator technique at frequencies (1–7) × 105 Hz in the temperature range 2–15 K. Plastic deformation leads to appearance of an internal friction peak localized in the temperature interval 4–5 K. It is shown that the peak shifts towards higher temperatures when increasing the vibration frequency and corresponds to a thermally activated relaxation process with very low values of the activation energyU ≈ 1.9×10−3 eV and the attack frequencyν0≈6.7 × 103 s−1. Interaction of sound with dislocation kinks migrating in the second order Peierls relief is considered as a possible mechanism of the peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.