Abstract

Melanoma is characterized by a low extracellular pH, which contributes to the development of an aggressive phenotype characterized by several properties as the switch to an epithelial-to-mesenchymal program, the increase of apoptotic resistance, and the migratory ability together with the development of drug resistance. Here, we demonstrate that melanoma cells grown in low pH medium (pH 6.7) for a short (24 hours) or long (at least 3 months) period equally express an anoikis resistance profile. Anoikis is a form of apoptosis prompted by loss of adhesion, particularly requested by aggressive cancer cells to metastasize. Anoikis resistance was ascertained in acidic melanoma cells either grown in agarose-coated plates or incubated in rocking conditions. Both analyses indicate that acidic cells were more able to survive in a nonadherent condition than cells grown in standard pH, an effect resulting in a more cloning efficiency and migratory ability. Ability to survive during rocking was inhibited using mTOR/NF-kB inhibitors. Finally, we checked whether characteristics related to the in vitro anoikis resistance acquired by acidic melanoma cells might be also suitable for in vivo challenge. We injected acidic melanoma cells into blood stream, and then we verify how many cells survived in blood after 15 min from the injection. Only acidic cells, transient and chronic, survived, whereas melanoma cells grown in standard pH medium did not. Overall, we have had the opportunity to demonstrate that low extracellular pH represents an additional mechanism able to promote an anoikis resistance in solid tumors.

Highlights

  • Metastatic disease is a fatal consequence for tumor-bearing patients and circulating tumor cells (CTCs) are the essential precondition for metastasis to occur

  • This means that migratory tumor cells have to acquire anoikis resistance to complete the metastatic cascade; resistance to anoikis might be considered a hallmark of metastatic cancer cells [4, 5]

  • Since in tumor microenvironment extracellular acidosis could occur as a short-time insult or as a prolonged stressed condition, we used 24h acidified melanoma cells, serving as a model of transient acidosis, and three months acidified A375M6 to evaluate the effect of a prolonged acidosis condition

Read more

Summary

Introduction

Metastatic disease is a fatal consequence for tumor-bearing patients and circulating tumor cells (CTCs) are the essential precondition for metastasis to occur. Among the several aspects characterizing the circulator phenotype, one of the most critical is anoikis resistance. Cancer cells need to survive after detachment from their primary site and during the travel through the lymphatic and circulatory systems. This means that migratory tumor cells have to acquire anoikis resistance to complete the metastatic cascade; resistance to anoikis might be considered a hallmark of metastatic cancer cells [4, 5].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.