Abstract

Simple SummaryOur aim was to elucidate the molecular mechanisms of how ANO1 contributes to oncogenic processes in squamous cell carcinoma of the head and neck (HNSCC). We explored transcriptional programs influenced by ANO1 knockdown in patient-derived UT-SCC cell lines with 11q13 amplification and ANO1 overexpression. ANO1 depletion led to downregulation of broad pro-survival BCL2 family protein members, including MCL1, and simultaneously induced upregulation of the cell cycle inhibitor p27Kip1 and its redistribution from the cytoplasm into the nucleus in the studied HNSCC cells. Gene set enrichment analysis highlighted pathways associated with perturbed cell cycle and apoptosis in the ANO1-depleted samples. Silencing of ANO1 and application of an ANO1-targeting small-molecule inhibitor led to ANO1 degradation and reduction of cell viability. These findings suggest that ANO1 has drug target potential that deserves further evaluation in preclinical in vivo models.Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target.

Highlights

  • Head and neck squamous cell carcinoma (HNSCC) consists of an etiologically and clinically heterogeneous group of tumors, located in the upper aerodigestive tract [1]

  • Because Anoctamin 1 (ANO1) expression is linked to epithelial-to-mesenchymal transition (EMT) [11,20], we examined if expression of selected EMT markers was affected by ANO1 depletion in the ANO1HIGH UT-SCC cells

  • In summary, we showed for the first time that ANO1 expression modulates p27Kip1 stability and its subcellular distribution in the studied patient-derived HNSCC cell lines

Read more

Summary

Introduction

Head and neck squamous cell carcinoma (HNSCC) consists of an etiologically and clinically heterogeneous group of tumors, located in the upper aerodigestive tract [1]. The estimated global annual incidence of head and neck cancer is 890,000 new cases leading to about 450,000 deaths [2]. The most commonly identified causal factors are tobacco and alcohol consumption [3], and human papillomavirus infection [4]. HNSCCs harbor a variety of genetic aberrations [5]. A monoclonal antibody that binds to the epidermal growth factor receptor (EGFR) and the immune checkpoint inhibitors nivolumab and pembrolizumab have more recently been approved for the treatment of HNSCC [6]. Recurrent and advanced HNSCC remain, challenging to treat and the development of novel treatments is a high priority [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.