Abstract

Total electron content (TEC) data is presented for similar sites at ±35° latitude, and conjugate sites at ±20°, for several years near solar maximum. Comparison with the MSIS atmospheric model shows that the large seasonal anomaly at 35°N (an increase of 80% in TEC from October to April) is fully explained by changes in neutral composition. The small seasonal anomaly at 35°S also agrees with the MSIS model. Composition changes fail to account for the generally higher TEC in the northern hemisphere; this suggests the presence of an overall south-to-north atmospheric wind. Eastern declinations also contribute to enhanced TEC in the northern hemisphere, in the Pacific zone. The MSIS model predicts a semiannual variation of about ±25% in TEC at all sites, while observed changes are only about ±8%; thus we require some enhanced loss process near the equinoxes, particularly in September and October. Peak height calculations assuming a constant pressure level give a large semiannual variation in the F2 region: this is replaced by an annual variation when h m F 2 is calculated from diffusion theory. Heights calculated from the MSIS model are similar to observed values at ±35° latitude on summer days. A decrease of about 20km in observed heights on winter days is attributed to a poleward neutral wind; this wind also reduces the observed TEC. At night the height changes correspond to an equatorial wind, which is largest in summer and equinox. Observed day time TEC is greater at 20°N than at 20°S at all times of year, suggesting a northward transequatorial wind which is strongest near January and gives increased TEC and decreased peak height at 20°N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.