Abstract

In this paper, we describe an uncertainty-aware estimation framework for gait relative attributes. We specifically design a two-stream network model that takes a pair of gait videos as input. It then outputs a corresponding pair of Gaussian distributions of gait absolute attribute scores and annotator-dependent gait relative attribute label distributions. Moreover, we propose a differentiable annotator-independent uncertainty layer to estimate the gait relative attribute score distribution from the absolute distributions then map it to a relative attribute label distribution using the computation of cumulative distribution functions. Furthermore, we propose another annotator-dependent uncertainty layer to estimate the uncertainty on the gait relative attribute labels in terms of a set of trainable transition matrices. Finally, we design a joint loss function on the relative attribute label distribution to learn the model parameters. Experiments on two gait relative attribute datasets demonstrated the effectiveness of the proposed method against baselines in quantitative and qualitative evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.