Abstract

BackgroundMicroRNAs (miRNA) are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets. The first whole goat genome sequence became available in 2013, with few annotations. Our goal was to establish a list of the miRNA expressed in the mammary gland of lactating goats, thus enabling implementation of the goat miRNA repertoire and considerably enriching annotation of the goat genome.ResultsHere, we performed high throughput RNA sequencing on 10 lactating goat mammary glands. The bioinformatic detection of miRNA was carried out using miRDeep2 software. Three different methods were used to predict, quantify and annotate the sequenced reads. The first was a de novo approach based on the prediction of miRNA from the goat genome only. The second approach used bovine miRNA as an external reference whereas the last one used recently available goat miRNA. The three methods enabled the prediction and annotation of hundreds of miRNA, more than 95% were commonly identified. Using bovine miRNA, 1,178 distinct miRNA were detected, together with the annotation of 88 miRNA for which corresponding precursors could not be retrieved in the goat genome, and which were not detected using the de novo approach or with the use of goat miRNA. Each chromosomal coordinate of the precursors determined here were generated and depicted on a reference localisation map. Forty six goat miRNA clusters were also reported. The study revealed 263 precursors located in goat protein-coding genes, amongst which the location of 43 precursors was conserved between human, mouse and bovine, revealing potential new gene regulations in the goat mammary gland. Using the publicly available cattle QTL database, and cow precursors conserved in the goat and expressed in lactating mammary gland, 114 precursors were located within known QTL regions for milk production and composition.ConclusionsThe results reported here represent the first major identification study on miRNA expressed in the goat mammary gland at peak lactation. The elements generated by this study will now be used as references to decipher the regulation of miRNA expression in the goat mammary gland and to clarify their involvement in the lactation process.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1471-y) contains supplementary material, which is available to authorized users.

Highlights

  • MicroRNAs are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets

  • Comparison of strategies for miRNA sequence identification generation sequencing (NGS) technologies coupled with bioinformatic analysis offer a powerful method to analyze miRNA gene expression which allows for both the measurement of known miRNA and the identification of novel miRNA [50]

  • As in a previous study where the mammary gland miRNome of lactating cow was established [44], the miRDeep2 software was used to determine the miRNome of lactating goat mammary gland

Read more

Summary

Introduction

MicroRNAs (miRNA) are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets. MicroRNAs (miRNA) are small non-coding RNA that regulate targeted mRNA expression at a post-transcriptional level [1,2]. MiRNA play a major role in a broad range of biological processes. It is estimated that miRNA genes may account for 2-5% of all mammalian genes and regulate the expression of up to 60% of protein-coding genes [3,4]. They are encoded in the genome and transcribed in a polIIdependent manner [5,6] as long transcripts from which long hairpin precursors are generated (pre-miRNA, ~70 nt) and cleaved out by the microprocessor Drosha endonuclease and cofactors [7]. An internal coordination of clustered miRNA to regulate downstream biological networks has been suggested [12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.