Abstract

Morphology optimization of donor–acceptor bulk heterojunctions at microscopic scale is critical for improving performance of organic photovoltaic devices. Here, effects of thermal annealing on phase separation processes in small-molecular bulk heterojunctions with different geometrical structures (i.e., PTCDA, TiOPc, CuPc and C60) are investigated with ultraviolet and X-ray photoemission spectroscopies. It was identified that post-annealing treatment caused the different degrees of vertical diffusions at the bulk heterojunctions, leading to non-uniform composition distributions. Variations in phase separations are mainly due to the differences in surface energy of the involved materials, which play a crucial role in the intermolecular interactions and the molecular diffusion. Low-surface-energy materials were found to segregate preferentially on the surface for minimizing total energy of the systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.