Abstract

Using a monoenergetic positron beam, annealing study of the Al/n-GaSb system was performed by monitoring the Doppler broadening of the annihilation radiation as a function of the positron implanting energy. The S-parameter against positron energy data was successfully fitted by a three-layer model (Al/interface/GaSb). The annealing out of the open volume defects in the polycrystalline Al layer was revealed by the decrease in the S-parameter and the increase in the effective diffusion length of the Al layer. For the as-deposited samples, a ∼ 5 nm interfacial region with S-parameter larger than those of the Al overlayer and the bulk was identified. After the 400◦C annealing, this interfacial region extends to over 40 nm and its S-parameter dramatically drops. This is possibly due to the new phase formation at the interface. Annealing behaviors of SB and L+,B of the GaSb bulk showed the annealing out of positron traps (possibly the VGa-related defect) at 250 ◦C. However, a further annealing at 400◦C induces the formation of positron traps, which are possibly of another kind of VGa-related defect and the positron shallow trap GaSb antisite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.