Abstract
This paper describes effects of using post-annealing treatment in different conditions on the properties of polycrystalline GaN layer grown on m-plane sapphire substrate by electron beam (e-beam) evaporator. Without annealing, GaN surface was found to have a low RMS roughness with agglomeration of GaN grains in a specific direction and the sample consisted of gallium oxide (Ga2O3) material. When the post-annealing treatment was carried out in N2 ambient at 650 °C, initial re-crystallization of the GaN grains was observed while the evidence of Ga2O3 almost disappeared. As the NH3 annealing was conducted at 950 °C, more effect of re-crystallization occurred but with less grains coalescence. Three dominant XRD peaks of GaN in (101¯0), (0002) and (101¯1) orientations were evident. Near band edge (NBE) related emission in GaN was also observed. The significant improvement was attributed to simultaneous recrystallization and effective reduction of N deficiency density. The post-annealing in a mixture of N2 and NH3 ambient at 950 °C was also conducted, but has limited the effectiveness of the N atoms to incorporate on the GaN layer due to ‘clouding’ effect by the inert N2 gas. Further increase in the annealing temperature at 980 °C and 1100 °C, respectively caused severe deteriorations of the structural and optical properties of the GaN layer. Overall, this work demonstrated initial potential in improving polycrystalline GaN material in simple and inexpensive manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.