Abstract
This paper indicates that changes in chain mobility, heat capacity, WAXS crystallinity, SAXS long period, SAXS peak intensity, specific volume and morphology as a function of increasing temperature, occur in three fairly distinct annealing ranges (I, II and III) that are more or less the same for all crystallized polymers with a lamellar morphology. It is shown that none of the proposed molecular models to date, including the well-known fold surface premelting model, can satisfactorily account for all the experimental data. However, a new molecular interpretation, based primarily on electron microscopy and SAXS studies of changes such as lateral ‘melting’ from edges of microparacrystallites ( mPC) within the lamellae seen at the annealing temperatures can account for the data. With our new molecular interpretation, the effect of temperature increase is established to result in a slight breakup of the laterally aligned mPC within the lamellae at low annealing temperatures in range I, and selective lateral ‘melting’ of the exposed mPC and recrystallization at higher annealing temperatures in ranges II and III, with the recrystallization being very limited in range III. Annealing effects seen in cold- or hot-drawn polymers with a fibrillar morphology can also be readily accounted for by this very general molecular mechanism occurring in the same annealing temperature ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.