Abstract

ABSTRACTIt is shown here that high-dose Zn implants in semi-insulating InP substrates, after conventional furnace anneals lead to the following anomalies : step-like atomic Zn and carrier distributions and the presence of electrically inactive Zn at all depths of the profiles.Zn anneal behavior is compared using conventional furnace anneals, and two different types of short-time anneals ; rapid furnace anneals(RFA)at ∼750°C with a rise-time of ∼ 50 s, and halogen lamp rapid thermal anneals (RTA)also at ∼ 750°C with a rise-time of ∼ 4 s. We have established that the Zn anomalous diffusion is an instantaneous phexomenon occuring during annealing transients. Also, we have further shown that RTA would help to smooth carrier profiles by removing the step in carrier (but not in atomic Zn) distribution.The properties of differently Zn co-implanted layers (Zn plus P, Zn plus In and Zn plus As) after RTA, and of P or In implanted Zn doped InP substrates after different anneals,have been studied. We have shown that the presence of electrically inactive Zn in the depth of the layers is a consequence of interaction between Zn atoms and defects. A simple model based on the density of damage deposited in the layer during implant, has been proposed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.