Abstract

In survival analysis, usually the interest is to study the time until the occurrence of an event. When observations are subject to more than one type of event (e.g, different causes of death) and the occurrence of an event prevents the occurrence of the other, there is a competing risks structure. In some situations, nevertheless, the main interest is to study two events, one of which (terminal event) prevents the occurrence of the other (nonterminal event) but not vice versa. This structure is known as semicompeting risks, defined initially by Fine et al. (2001). In this work, we consider two approaches for analyzing data with this structure. One approach is based on the bivariate survival function through Archimedean copulas and estimators for the survival functions are obtained. The second approach is based on a process with three states, known as Illness-Death process, which can be specified by the transition intensity functions or risk functions. In this case, the inclusion of covariates and a possible dependence between the two times is taken into account by a shared frailty. These methodologies are applied to two data sets: the first one is a study with 137 patients with leukemia that received an allogeneic marrow transplant, withmaximum follow up of 7 years; the second is a dataset of 1253 patients with chronic kidney disease on dialysis treatment, followed from 2009 until 2011.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.