Abstract

Particle cracking is an important damage mode in numerous engineering alloys having anisotropic microstructures. In this contribution, cracking of anisotropic Fe-rich intermetallic particles in an extruded 6061 (T651) Al-alloy is quantitatively characterized as a function of compressive strain for two loading directions. The Fe-rich intermetallic particles rotate when a compressive load is applied parallel to the extrusion direction, which in turn affects the particle cracking process. At low compressive strains, the number fraction of cracked Fe-rich particles is higher in specimens loaded perpendicular to the extrusion axis as compared to that in specimens loaded parallel to the extrusion axis. However, the reverse is true at the high strain levels. These differences in damage evolution are explained on the basis of particle rotations and microstructural anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.