Abstract

The anisotropy of the electronic structure of ternary nanolaminate V2GeC is investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured polarization-dependent emission spectra of V L2,3, C K, Ge M1 and Ge M2,3 in V2GeC are compared to those from monocarbide VC and pure Ge. The experimental emission spectra are interpreted with calculated spectra using ab initio density-functional theory including dipole transition matrix elements. Different types of covalent chemical bond regions are revealed; V 3d - C 2p bonding at -3.8 eV, Ge 4p - C 2p bonding at -6 eV and Ge 4p - C 2s interaction mediated via the V 3d orbitals at -11 eV below the Fermi level. We find that the anisotropic effects are high for the 4p valence states and the shallow 3d core levels of Ge, while relatively small anisotropy is detected for the V 3d states. The macroscopic properties of the V2GeC nanolaminate result from the chemical bonds with the anisotropic pattern as shown in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.