Abstract

Thermally insulating materials are commonly used to reduce energy consumption in buildings. Most commercial products possess only low thermal conductivities but poor insulating capabilities in the daytime with little sunlight reflectance and thermal emittance. It is challenging to achieve all traits in the same material. Herein, anisotropic boron nitride nanosheet (BNNS)/polyvinyl alcohol composite aerogels are developed using the unidirectional freeze-casting technique. Benefitting from the aligned porous structure, the composite aerogel with an optimal BNNS content exhibits a combination of an ultralow TC of 20.3 mW/mK in the through-thickness direction, a high solar-weighted reflectance of 95.0 % over the whole sunlight wavelength and a high emittance of above 93 % within the atmospheric transparency window. These exceptional thermo-optical properties enable the composite aerogel to maintain the interior temperature much cooler than commercially available foams, making them promising candidates as superinsulating envelopes for energy saving in buildings towards carbon neutrality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.